\subtitle{Evaluating Performance} \date{Monday (AM), 14 May 2018} \begin{document} \begin{frame} \titlepage \end{frame} % What do we want? % What do we measure? % How do we measure it? \begin{frame}{What is Player Experience?} \begin{block}{Player experience} Collection of events that occur to the player during the game \note{Should be clear - it is only the events that occur because of the game that are important} \end{block} \end{frame} \begin{frame}{What is Player Experience?} \begin{block}{Scenario} Jeffrey is playing a game in his bedroom. The game is an online RTS game, and he is playing with a friend online against two other people. \end{block} \begin{block}{Question} Which of these are a part of the player experience and which are not?\note{All happen while the person is playing a game} \end{block} \begin{itemize} \item<2->{Losing a unit} \uncover<7->{Yes} \item<3->{Laundry finishing} \uncover<8->{No} \item<4->{Collecting resource} \uncover<9->{Yes} \item<5->{New message in chat window} \uncover<10->{Yes} \item<6->{Unit moving} \uncover<11->{Yes} \end{itemize} \note{\\ Anything that occurs during the game and as part of the game is part of the player experience. Which of these can be detected by an AI?} \end{frame} \section{Metrics} \begin{frame} Collect data on how players/bots work \begin{block}{Activity} What kinds of features can we collect? \end{block} \end{frame} \begin{frame}{Data from humans} \begin{itemize}[<+->] \item{High-level human experience} \begin{itemize} \item Final game scores? \item How long did they play for? \end{itemize} \item{Biosignals} \begin{itemize} \item Where did they look? \item Galvanic skin response \item BCI \end{itemize} \item{Surveys and interviews} \begin{itemize} \item Likert Scales \item Why did you feel that way? \end{itemize} \end{itemize} \end{frame} \begin{frame}{Data from bots} \begin{itemize}[<+->] \item Internal State \begin{itemize} \item Will depend on bot architecture \item Measure state visits in FSM \item Did the game make full use of the AI? \end{itemize} \item How many times does a bot face a difficult choice? \begin{itemize} \item What is a difficult choice? \note{Difficult Choice: MCTS - near identical branches, GA - No Convergence} \end{itemize} \end{itemize} \end{frame} \begin{frame}{Data from either} \note{Some things can be measured regardless of if a human or AI is playing \begin{itemize}} \begin{itemize}[<+->] \item Final Score distribution\note{\item How high, variation?} \item Game Duration \note{\item Length, range of lengths} \item Score ``Drama'' \note{\item Runaway victory?, keep changing hands? loop?} \item Statistical distribution of states \note{\item Some states not used at all? Some overused?} \item Degree of challenge \note{\item How to measure this?} \end{itemize} \note{\end{itemize}} \end{frame} \begin{frame}{Data from populations} Variability of scores, skill-depth \end{frame} \section{Action Sequences} \begin{frame}{Data from either} Actions taken, Record the sequence of button-pushes \end{frame} \begin{frame}{Entropy} \note{\begin{itemize}} \begin{itemize}[<+->] \item Sometimes used to interpret aspects of player experience \begin{itemize} \item $H(X) = \sum_{i=1}^{n} P(x_{i})I(x_{i}) = -\sum_{i=1}^{n}P(x_{i})\log_{b}P(x_{i})$ \note{\item We won't worry too much about the middle definition} \item Take a fair coin - how much entropy? \item $H(fairCoint) = \sum_{i=1}^{2}(\frac{1}{2})\log_{2}(\frac{1}{2}) = -\sum_{i=1}^{2}(\frac{1}{2}) \times (-1) = 1 $ \note{\item Because it is a fair coin - each toss can tell us nothing} \item How about an unfair coin? What is the entropy for a coin of probability 0.9? \note{\item Whiteboard time if students stuck: \begin{itemize}} \note{\item Answer is: $ H(dodgyCoin) = \sum_{i=1}^{2}(0.9)\log_{2}(0.9) = $} \note{\item Continued: $ -\Big( (0.9 \log_{2}0.9) + (0.1 \log_{2}0.1) \Big) = 0.47 $} \note{\end{itemize}} \end{itemize} \end{itemize} \begin{center} \uncover<6->{\includegraphics[scale=0.4]{entropy}\footnote<6->{Borrowed from \href{https://en.wikipedia.org/wiki/Entropy_(information_theory)}{wikipedia}}} \end{center} \note{\end{itemize}} \end{frame} \begin{frame}{A Game Example} \note{\begin{itemize}} \begin{columns} \note{\item Some sample 2D location visit counts} \only<1>{\begin{column}{0.45\textwidth} \begin{tabularx}{\linewidth}{l | l | l | l} loc & 0 & 1 & 2 \\ \hline 0 & 10 & 20 & 15 \\ 1 & 12 & 35 & 13 \\ 2 & 15 & 20 & 10 \\ \end{tabularx} \end{column}} \note{\item Converted into visit counts as fraction of total and then into probability of having visited that location} \only<1->{\begin{column}{0.45\textwidth} \begin{tabularx}{\linewidth}{l | l | l} loc & visits & p(loc) \\ \hline 0,0 & $\frac{10}{150}$ & 0.067\\ 0,1 & $\frac{12}{150}$ & 0.08\\ 0,2 & $\frac{15}{150}$ & 0.1\\ 1,0 & $\frac{20}{150}$ & 0.134\\ 1,1 & $\frac{35}{150}$ & 0.234\\ 1,2 & $\frac{20}{150}$ & 0.134 \\ 2,0 & $\frac{15}{150}$ & 0.1\\ 2,1 & $\frac{13}{150}$ & 0.0867\\ 2,2 & $\frac{10}{150}$ & 0.067\\ \end{tabularx} \end{column}} \note{\item Then we just perform the math as a giant summation. Computers are good at this} \note{\item Except computers are not keen on 0's} \only<2>{\begin{column}{0.45\textwidth} \begin{itemize} \item $H(X) = $ \item $2\big(0.067\log_{2}(0.067)\big) + $ \item $2\big(0.134\log_{2}(0.134)\big) + $ \item $2\big(0.1\log_{2}(0.1)\big) + $ \item $ \big(0.08\log_{2}(0.08)\big) + $ \item $ \big(0.234\log_{2}(0.234)\big) + $ \item $ \big(0.0867\log_{2}(0.0867)\big)$ \end{itemize} \end{column}} \end{columns} \note{\end{itemize}} \end{frame} %% METRICS % Simon's raw vs computed metrics. %% SKILL % Evaluating skill depth \begin{frame}{Skill Ratings} \note{\begin{itemize}} \begin{itemize}[<+->] \item How good is a player? \note{\item And how do we represent this?} \item What is the issue with win rates? \note{\item Based on observations, was it enough? Watch F1 at one track and use those observations for another?} \item If A $>$ B and B $>$ C is A $>$C? \note{\item Usually this is the case in games} \end{itemize} \note{\end{itemize}} \end{frame} \begin{frame}{Elo Ratings} \note{\begin{itemize}} \begin{itemize}[<+->] \item Elo is based on probability \note{\item Designed for chess} \item $Elo(A) - Elo(B) = P(A$ beats $B)$ \note{\item Point difference between players denotes the probability of winning} \note{\item Advantage of 100 points = 64\% chance of winning \item Advantage of 200 points = 76\% chance of winning} \end{itemize} \begin{center} \only<3>{\includegraphics[scale=0.5]{elo}\footnote{Borrowed from \href{http://liquipedia.net/starcraft/Elo_rating}{liquipedia}}} \end{center} \note{\end{itemize}} \end{frame} \end{document}