Newer
Older
\documentclass{beamer}
\usepackage{ulem}
\usepackage[utf8]{inputenc}
\usetheme{metropolis}
\title[CE810 GD2]{CE810 - Game Design 2}
\subtitle{Evaluating Performance}
\date{Monday (AM), 14 May 2018}
\author{Joseph Walton-Rivers \& Piers Williams}
\institute{Univeristy of Essex}
\newcommand{\keyterm}[1] {\textbf{\alert{#1}}}
%\usepackage{beamer}
\begin{document}
\begin{frame}
\titlepage
\end{frame}
% What do we want?
% What do we measure?
% How do we measure it?
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
\begin{frame}{What is Player Experience?}
Player experience
\end{frame}
\section{Metrics}
\begin{frame}
Collect data on how players/bots work
\begin{block}{Activity}
What kinds of features can we collect?
\end{block}
\end{frame}
\begin{frame}{Data from humans}
high-level human experience
Biosignals
Surveys and interviews
\end{frame}
\begin{frame}{Data from bots}
Internal State
How often does a bot face a difficult choice
\end{frame}
\begin{frame}{Data from either}
Final Score distribution, Game duration, Score 'drama', Statical distribution of states, Degree of challenge
\end{frame}
\begin{frame}{Data from populations}
Variability of scores, skill-depth
\end{frame}
\section{Action Sequences}
\begin{frame}{Data from either}
Actions taken, Record the sequence of button-pushes
\end{frame}
\begin{frame}{Entropy}
\end{frame}
%% METRICS
% Simon's raw vs computed metrics.
%% SKILL
% Evaluating skill depth
\end{document}